Tracking the shape-dependent sintering of platinum–rhodium model catalysts under operando conditions
نویسندگان
چکیده
Nanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum-rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design. For platinum-rich particles our results disclose a dramatic reaction-induced height increase, accompanied by a corresponding reduction of the total particle surface coverage. We find this restructuring to be progressively reduced for particles with increasing rhodium composition. We explain our observations by a carbon monoxide oxidation promoted non-classical Ostwald ripening process during which smaller particles are destabilized by the heat of reaction. Its driving force lies in the initial particle shape which features for platinum-rich particles a kinetically stabilized, low aspect ratio.
منابع مشابه
Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes
Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the comp...
متن کاملCATALYTIC REFORMING OF n-HEPTANE ON PLATINUM-TUNGSTEN SUPPORTED ON GAMMA-ALUMINA
The mono-metallic and bi-metallic catalysts have been prepared by impregnating with solutions containing a compound of H2PtCl6,WO3 and 1ml HCl (0.1 mol). It should be noted that the catalysts’ activity and selectivity have been determined under these conditions : 450-5000C ,and 15-25atm by H2. For converting n-heptane , the molar ratio H2/C7H16 is 5 , and LHSV is 1.5ml/h. It has been proved tha...
متن کاملSeparation and Recovery of Platinum and Palladium from Spent Petrochemical Catalysts Using Activated Carbon, Analysis of Two Kind of Most Used Catalysts in Petro Chemistry
The goal of this work is the separation and recovery of platinum and palladium from spent catalyst. The recovery consisted of separating the maximum amount of platinum and palladium from catalysts and changing them into usable forms. The petroleum and petrochemical units use Pt and Pd catalyst for reactions such as reforming and hydrogenation. Because these materials contain valuable metals...
متن کاملPlatinum Metals Review
The Electrosynthesis of Organic Compounds Measurement of Electrodeposit Thickness Electron Concentration as a Guide to Alloying Behaviour A Rhodium-Platinum Probe for Flame Velocity Measurement Ruthenium-Platinum Oxide Catalysts for Hydrogenation Reactions Complexes of Substituted Olefins with Salts of the Platinum Metals Making Corrosion-Resistant Brazed Joints in Stainless Steel Thermocouples...
متن کاملTime Resolved Operando X-ray Techniques in Catalysis, a Case Study: CO Oxidation by O2 over Pt Surfaces and Alumina Supported Pt Catalysts
The catalytic oxidation of CO by O2 to form CO2 over Pt surfaces and supported catalysts is one of the most studied catalytic reactions from both fundamental and applied points of view. This review aims to show how the application of a range of time resolved, X-ray based techniques, such as X-ray diffraction (XRD), Surface X-ray diffraction (SXRD), total X-ray scattering/pair distribution funct...
متن کامل